Omega-3 and omega-3/curcumin-enriched fruit juices decrease tumour growth and improve muscle wasting in tumour-bearing mice

Silvia Busquets, Enrica Marmonti, Francesc Oliva, Estefanía Simoes, Daniel Luna, Janne Sand Mathisen, Francisco J López-Soriano, Maria Öhlander, Josep M Argilés

Abstract


Background: The aim of the present investigation was to evaluate the effects of the administration of a juice containing essential nutrients (marine omega-3 fatty acids: EPA and DHA, a polyphenolrich juice, vitamin D3, essential amino acids and dietary fibre) (CAX) and a juice also enriched with curcumin (CUR), alone or in combination with a chemotherapeutic agent (sorafenib) in a mouse cancer cachexia model.

Methods: Administration of CAX and CUR in the form of jellified pellets to mice bearing the Lewis lung carcinoma.

Results: Administration of CAX and CUR in the form of jellified pellets to mice bearing the Lewis lung carcinoma resulted in a 12 and 18% reduction in tumour weight, respectively, but no additive effect in combination with sorafenib was seen. No effects on metastases measurements were observed. In spite of the reduction of the primary tumour, the chemotherapy treatment alone did not result in any changes in body weight. Conversely, in combination with sorafenib, both juices had an important effect on body weight loss. CUR also had an effect without chemotherapy. Concerning muscle weight, tibialis muscle mass was increased as a result of CAX and CUR treatment. Sorafenib-treated mice had a tendency towards larger tibialis muscles, this tendency being clearly significant when CAX was administered in combination with chemotherapy. In sorafenib-treated mice, juice treatment --either CAX or CUR-- resulted in a tendency to an increase in grip force.

Conclusions: It is concluded that administration of omega-3/protein and omega-3/protein/curcumin-enriched fruit juices may have beneficial effects on muscle wasting and could be part of a multi-modal therapy for cancer cachexia.


Full Text:

PDF

References


Warren S. The immediate cause of death in cancer. Am J Med Sci. 1932;184:610‑3.

Argilés JM, Alvarez B, López-Soriano FJ. The metabolic basis of cancer cachexia. Med. Res. Rev. [Internet]. 1997 [cité 15 déc 2014];17:477‑98.

Harvey KB, Bothe A, Blackburn GL. Nutritional assessment and patient outcome during oncological therapy. Cancer [Internet]. 1979 [cité 11 mars 2016];43:2065‑9.

Nixon DW, Heymsfield SB, Cohen AE, Kutner MH, Ansley J, Lawson DH, et al. Protein-calorie undernutrition in hospitalized cancer patients. Am. J. Med. [Internet]. 1980 [cité 6 mars 2016];68:683‑90.

De Wys W. Working conference on anorexia and cachexia of neoplastic disease. Cancer Res [Internet]. 1970/11/01 éd. 1970;30:2816‑8.

Argilés JM, Busquets S, López-Soriano FJ. Cytokines as mediators and targets for cancer cachexia. Cancer Treat. Res. [Internet]. 2006 [cité 27 nov 2013];130:199‑217.

Ezeoke CC, Morley JE. Pathophysiology of anorexia in the cancer cachexia syndrome. J. Cachexia. Sarcopenia Muscle [Internet]. 2015

Argiles JM, Alvarez B, Lopez-Soriano FJ. The metabolic basis of cancer cachexia. Med Res Rev [Internet]. 1997;17:477‑98.

Llovera M, García-Martínez C, Agell N, Marzábal M, López-Soriano FJ, Argilés JM. Ubiquitin gene expression is increased in skeletal muscle of tumour-bearing rats. FEBS Lett [Internet]. 1994;338:311‑8.

Costelli P, Carbó N, Tessitore L, Bagby GJ, Lopez-Soriano FJ, Argilés JM, et al. Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. J. Clin. Invest. 1993;92:2783‑9.

Lippman MM, Laster WR, Abbott BJ, Venditti J, Baratta M. Antitumor activity of macromomycin B (NSC 170105) against murine leukemias, melanoma, and lung carcinoma. Cancer Res [Internet]. 1975;35:939‑45.

Henry N, van Lamsweerde AL, Vaes G. Collagen degradation by metastatic variants of Lewis lung carcinoma: cooperation between tumor cells and macrophages. Cancer Res. [Internet]. 1983 [cité 11 mars 2016];43:5321‑7.

Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. [Internet]. 2004 [cité 1 févr 2016];64:7099‑109.

Chai H, Luo AZ, Weerasinghe P, Brown RE. Sorafenib downregulates ERK/Akt and STAT3 survival pathways and induces apoptosis in a human neuroblastoma cell line. Int. J. Clin. Exp. Pathol. [Internet]. 2010 [cité 12 mars 2016];3:408‑15.

Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. [Internet]. 2006 [cité 29 févr 2016];66:11851‑8.

Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. [Internet]. 2008 [cité 21 janv 2016];359:378‑90.

Kane RC, Farrell AT, Saber H, Tang S, Williams G, Jee JM, et al. Sorafenib for the Treatment of Advanced Renal Cell Carcinoma. Clin. Cancer Res. [Internet]. 2006 [cité 10 janv 2016];12:7271‑8.

Toledo M, Penna F, Busquets S, López-Soriano FJ, Argilés JM. Distinct behaviour of sorafenib in experimental cachexia-inducing tumours: the role of STAT3. PLoS One [Internet]. 2014 [cité 11 mars 2016];9:e113931.

Toledo M, Penna F, Oliva F, Luque M, Betancourt A, Marmonti E, et al. A multifactorial anti-cachectic approach for cancer cachexia in a rat model undergoing chemotherapy. J. Cachexia. Sarcopenia Muscle [Internet]. 2015 [cité 14 mars 2016]

Argilés JM, Almendro V, Busquets S, López-Soriano FJ. The pharmacological treatment of cachexia. Curr. Drug Targets [Internet]. 2004 [cité 27 nov 2013];5:265‑77.

Argilés JM, Anguera A, Stemmler B. A new look at an old drug for the treatment of cancer cachexia: megestrol acetate. Clin. Nutr. [Internet]. 2013 [cité 9 janv 2014];32:319‑24.

Tisdale MJ, Dhesi JK. Inhibition of weight loss by omega-3 fatty acids in an experimental cachexia model. Cancer Res. [Internet]. 1990 [cité 11 mars 2016];50:5022‑6.

Costelli P, Llovera M, López-Soriano J, Carbó N, Tessitore L, López-Soriano FJ, et al. Lack of effect of eicosapentaenoic acid in preventing cancer cachexia and inhibiting tumor growth. Cancer Lett. [Internet]. 1995 [cité 11 mars 2016];97:25‑32.

Jatoi A, Rowland K, Loprinzi CL, Sloan JA, Dakhil SR, MacDonald N, et al. An eicosapentaenoic acid supplement versus megestrol acetate versus both for patients with cancer-associated wasting: a North Central Cancer Treatment Group and National Cancer Institute of Canada collaborative effort. J Clin Oncol [Internet]. Mayo Clinic and Foundation, Rochester, MN 55905, USA. jatoi.aminah@mayo.edu; 2004;22:2469‑76.

Faber J, Uitdehaag MJ, Spaander M, van Steenbergen-Langeveld S, Vos P, Berkhout M, et al. Improved body weight and performance status and reduced serum PGE2 levels after nutritional intervention with a specific medical food in newly diagnosed patients with esophageal cancer or adenocarcinoma of the gastro-esophageal junction. J. Cachexia. Sarcopenia Muscle [Internet]. 2015 [cité 11 mars 2016];6:32‑44.

Fearon KCH, Von Meyenfeldt MF, Moses AGW, Van Geenen R, Roy A, Gouma DJ, et al. Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut [Internet]. 2003 [cité 22 févr 2016];52:1479‑86.

Toledo M, Busquets S, Sirisi S, Serpe R, Orpí M, Coutinho J, et al. Cancer cachexia: physical activity and muscle force in tumour-bearing rats. Oncol. Rep. [Internet]. 2011 [cité 27 nov 2013];25:189‑93.

Donati MB, Mussoni L, Poggi A, De Gaetano G, Garattini S. Growth and metastasis of the Lewis lung carcinoma in mice defibrinated with batroxobin. Eur. J. Cancer. 1978;14:343‑7.

Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer [Internet]. 2014 [cité 8 oct 2014];14:754‑62.

Busquets S, Serpe R, Sirisi S, Toledo M, Coutinho J, Martínez R, et al. Megestrol acetate: its impact on muscle protein metabolism supports its use in cancer cachexia. Clin. Nutr. [Internet]. 2010 [cité 27 nov 2013];29:733‑7.

Toledo M, Marmonti E, Massa D, Mola M, López-Soriano FJ, Busquets S, et al. Megestrol acetate treatment influences tissue amino acid uptake and incorporation during cancer cachexia. ESPEN. J. [Internet]. 2012 [cité 27 nov 2013];7:e135‑8.

Anti M, Marra G, Armelao F, Bartoli GM, Ficarelli R, Percesepe A, et al. Effect of omega-3 fatty acids on rectal mucosal cell proliferation in subjects at risk for colon cancer. Gastroenterology [Internet]. 1992/09/01 éd. Department of Internal Medicine, Catholic University of Rome, Italy.; 1992;103:883‑91.

Rose DP, Connolly JM. Effects of dietary omega-3 fatty acids on human breast cancer growth and metastases in nude mice. J Natl Cancer Inst [Internet]. 1993/11/03 éd. Division of Nutrition and Endocrinology, American Health Foundation, Valhalla, NY 10595.; 1993;85:1743‑7.

Tisdale MJ. Mechanism of lipid mobilization associated with cancer cachexia: interaction between the polyunsaturated fatty acid, eicosapentaenoic acid, and inhibitory guanine nucleotide-regulatory protein. Prostaglandins Leukot Essent Fat. Acids [Internet]. 1993/01/01 éd. Pharmaceutical Sciences Institute, Aston University, Birmingham, UK.; 1993;48:105‑9.

Ellulu MS, Khaza’ai H, Patimah I, Rahmat A, Abed Y. Effect of long chain omega-3 polyunsaturated fatty acids on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Food Nutr. Res. [Internet]. 2016 [cité 14 mars 2016];60:29268.

Hampel U, Krüger M, Kunnen C, Garreis F, Willcox M, Paulsen F. In vitro effects of docosahexaenoic and eicosapentaenoic acid on human meibomian gland epithelial cells. Exp. Eye Res. [Internet]. 2015 [cité 14 mars 2016];140:139‑48.

Fearon KC, Barber MD, Moses AG, Ahmedzai SH, Taylor GS, Tisdale MJ, et al. Double-blind, placebo-controlled, randomized study of eicosapentaenoic acid diester in patients with cancer cachexia. J Clin Oncol [Internet].

;24:3401‑7.

Dewey A, Baughan C, Dean T, Higgins B, Johnson I. Eicosapentaenoic acid (EPA, an omega-3 fatty acid from fish oils) for the treatment of cancer cachexia. Cochrane Database Syst Rev [Internet]. 2007/01/27 éd. University of Portsmouth, School of Health Sciences & Social Work, James Watson Hall (West), 2 King Richard 1st Road, Portsmouth, UK, PO1 2FR. ann.dewey@port.ac.uk; 2007;CD004597.

Sharma OP. Antioxidant activity of curcumin and related compounds. Biochem. Pharmacol. [Internet]. 1976 [cité 4 mars 2016];25:1811‑2.

Kuttan R, Bhanumathy P, Nirmala K, George MC. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett. [Internet]. 1985 [cité 25 févr 2016];29:197‑202.

Xu YX, Pindolia KR, Janakiraman N, Noth CJ, Chapman RA, Gautam SC. Curcumin, a compound with anti-inflammatory and anti-oxidant properties, down-regulates chemokine expression in bone marrow stromal cells. Exp. Hematol. [Internet]. 1997 [cité 12 mars 2016];25:413‑22.

Sadzuka Y, Nagamine M, Toyooka T, Ibuki Y, Sonobe T. Beneficial effects of curcumin on antitumor activity and adverse reactions of doxorubicin. Int. J. Pharm. [Internet]. 2012 [cité 15 févr 2016];432:42‑9.

Bhaumik S, Anjum R, Rangaraj N, Pardhasaradhi B V, Khar A. Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates. FEBS Lett. [Internet]. 1999 [cité 23 févr 2016];456:311‑4.

Khar A, Ali AM, Pardhasaradhi B V, Begum Z, Anjum R. Antitumor activity of curcumin is mediated through the induction of apoptosis in AK-5 tumor cells. FEBS Lett. [Internet]. 1999 [cité 12 mars 2016];445:165‑8.

Huang MT, Newmark HL, Frenkel K. Inhibitory effects of curcumin on tumorigenesis in mice. J. Cell. Biochem. Suppl. [Internet]. 1997 [cité 12 mars 2016];27:26‑34.

Halder RC, Almasi A, Sagong B, Leung J, Jewett A, Fiala M. Curcuminoids and ω-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon γ production. Front. Physiol. [Internet]. Frontiers; 2015 [cité 6 mai 2016];6:129.

Menon LG, Kuttan R, Kuttan G. Anti-metastatic activity of curcumin and catechin. Cancer Lett. [Internet]. 1999 [cité 12 mars 2016];141:159‑65.

Busquets S, Carbó N, Almendro V, Quiles MT, López-Soriano FJ, Argilés JM. Curcumin, a natural product present in turmeric, decreases tumor growth but does not behave as an anticachectic compound in a rat model. Cancer Lett. [Internet]. 2001 [cité 27 nov 2013];167:33‑8.

Wang S, Wang X, Ye Z, Xu C, Zhang M, Ruan B, et al. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochem. Biophys. Res. Commun. [Internet]. 2015 [cité 12 mars 2016];466:247‑53.

von Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2015. J. Cachexia. Sarcopenia Muscle [Internet]. 2015 [cité 16 déc 2016];6:315‑6.


Refbacks

  • There are currently no refbacks.